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1.       Introduction   

 

As it was mentioned above, only few papers were devoted to solving the 

problems for the both over-determined and sub-determined systems of the 

differential equations. These results are not complete not only for the differential 

equations, but also for the algebraic equations. Therefore, at first the algebraic 

character problems occur: how can a rectangular matrix be inverted?  By this way, 

sometimes we reduce the general system to the normal form. It is interesting to 

note that the formulation of the mixed problem does not belong to the class of 

“usual” problems.  

 

2. Problem statement 

 

Consider the following mixed problem for the system of the first order 

linear differential equations of general form [3], [7] 
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0,0),1(),0(  ttutu  ,                                           (2) 

 1,0),()0,(  xxAxuA  ,                                            (3) 

where A , B  and C  are given matrices of dimension ( nm ) with constant 

elements, ),( txf  and )(x  are given matrices of dimensions ( km ) and 

),( kn  respectively,   and   are given matrices of dimension ( nm ) and 

finally ),( txu  is a desired matrix of dimension ( kn ). 
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If nm   (definite system), the matrices A , B  and C  may degenerate. 

Let   

),( rankBrank  .                                                     (4) 

Assuming that  ),( txu  is a solution, we apply the Laplace transform: 
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integrating by parts the first term in (5) and taking into account the initial 

condition (3), we obtain  
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Here we assumed that 
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In the same way, from boundary condition (2) one may obtain 

0),1(~),0(~   uu .                                               (10) 

Thus, we obtain boundary value problem (8), (10) with parameters. 

Remark 1.  A.N. Tikhonov determined the solution of some problem as an 

element of the considered space [14]. At least, this solution gives minimum error. 

This problem may have no solution in the usual sense [14], [15]. 

Let’s multiply system (8) from the left by the transposed matrix B , i.e. 
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We call the obtained system a transformed system.  

In spite of the fact, that the matrices ,ABT BBT  and CBT  are quadratic, 

they may degenerate. 

We represent system (11) in the following form [8]: 
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From this it is not difficult to obtain  



O.H. ASADOVA et al.: INVESTIGATION OF THE MIXED PROBLEM … 

 

 
141 

 













0

0

))(),(
~

(

),(~)(),(~

xABxfBde

xuCBABdexu

TTBB

TTBB

T

T









                   (12) 

Solving obtained system (12), we find 
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it is easy to see that (13) is a  solution of system (12).  

Thus the following statement is proved. 

Theorem 1. Let A , B  and C  be the given real matrices of dimension ( nm ), 

),( txf  and  )(x  be given real-valued continuous matrices of the functions of 

dimension ( km ) and ( kn ), respectively. If the matrix BBT  is non-negative, 

then (13) is a solution of system (12). 

Remark 2. System (8) may have no solutions. If in this case system (12) has a 

solution, then it will be called a generalized solution of system (8). 

From (13) we easily get 
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Substituting (14) into (10) we have 
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Thus, we obtain a system of the linear algebraic equations with rectangular 

matrices with respect to the matrix ),0(~ u . At first we represent it in the form 
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Then we can represent equation (16) in the form 
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and  ),1(~ u   is determined by means of relation (14). 

Finally, the solution of spectral problem (8), (10) is found from (13). 

Theorem 2. Under the conditions of Theorem 1 and (4), the generalized solution 

of mixed problem (8), (10) is represented in the form (13), where  ),0(~ u  is 

found from (20). 

The following statement is true for the solution of initial problem (1)-(3). 

Theorem 3. Under the conditions of Theorem 2, the generalized solution of 

mixed problem (1)-(3) is represented in the form 
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where  ),(~ xu  is given in Theorem  2. 

Using the schemes given in [1, 2, 4-6, 10], similar statements are proved 

for the multi-dimensional case.   
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